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ABSTRACT
This answer to Reviel Netz’s article at first questions his optimism
concerning our technological future. After that, it suggests a
different role for Archimedes and the other prominent Greek
mathematicians than the one claimed by Netz: as providers not
of answers but of problems which called for the transformation
of the abbacus and cossist algebra tradition, thereby allowing
first Viète and then Descartes to create the first level of the new
analysis of the seventeenth century (the second level being
infinitesimal analysis).
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Obviously, Reviel’s article is not one concerning which it is possible to claim that what it
states is right or wrong. Reviel himself says as much on his last page. Nonetheless, I agree
with much; but I have some supplements, objections and oblique views. As will be seen
below, the arguments are tangled – for which I apologize, but which I believe they have to
be.

True or not, Reviel’s exploration of counterfactual history has the merit that it brings
into the open what is hidden but tacitly presupposed in many discussions about, for
instance, the ‘causes of the scientific revolution’ or the ‘Needham problem’.

So, I shall try to keep my own cogitations on the same level as that of Reviel’s article,
somewhere between history and applied philosophy of history – with references for quo-
tations and for matters where my evidence cannot be presupposed to be broadly known,
but none elsewhere.

Before approaching mymain subject, I must confess I was struck by Reviel’s optimism,
expressed in the belief that humanity got lucky that Archimedes happened.

I have strong doubts that the First Industrial Revolution – the English one, say, from
1600 to 1850 – depended much on the kind of Scientific Revolution that on its part
depended on Archimedes and his ancient successors. But the Second Industrial Revolu-
tion, carried (very roughly speaking) first by Germany, and after Edison also by the US,
depended critically on mathematical analysis which – as I shall explain later – in the
actual process was the outcome of a process where Archimedes and his ancient succes-
sors played a decisive role.

Coal was mined already before the First Revolution, and could have been so without
the Second; the mathematics of Lavoisier’s chemical revolution (essential to what he did)
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had nothing to do with Archimedes and much more with accounting. Even drilling for
oil was initially in no need of higher mathematics; but without the highly mathematical
seismological techniques that allow the tracing of resources deeply buried in the ground
we might have hit ‘peak oil’ decades ago (as was predicted in the 1950s); without math-
ematical analysis, ballistics would hardly have gone more than marginally beyond that of
WWI, and atomic weapons would not have existed. Concentrating on oil we may say that
industrial society would have stopped its expansion long before we came into the situ-
ation where we can now say with Madame de Pompadour, après nous le Déluge. She
died 25 years before 1789; but 1789 arrived, and a climate catastrophe reducing the
human survivors to something we prefer not to think about may still arrive, thanks to
technologies made possible inter alia by the arrival of Archimedes long ago, and the sur-
vival of his works. So, perhaps, humanity was not so lucky; we shall know within a few
decades (that is, those of us who shall still be able to know anything).

Getting closer to Reviel’s central reflections, I would object that he leaves out of con-
sideration the role of the humbler level of mathematics in the centuries leading up to
the seventeenth-century transformation of mathematics – that is, of the mathematics of
those who counted and measured for a living and of their teachers. Not that Reviel in
general disregards them, as many other historians of mathematics do: to the contrary,
vide (Netz 2002). He also does not mention a book quoted almost as often as the Bible
in the Latin medieval world: Isidore’s Etymologiae. Isidore did not know much mathemat-
ics and was hardly at a philosophical level where we can ascribe any Neoplatonism to him
(nobody was in the Latin seventh or eighth centuries, none indeed before Erigena); but Isi-
dore’s most important misunderstanding was not mathematical but the belief that the
quadrivial arts were of utmost importance, which they had never been in Roman Antiquity
(ask Augustine, who found no teacher for them, and no students who were interested). So,
when cathedral schools woke up again around 980 after the interruption caused byMagyar
and Viking marauders, there was a good excuse to take up the quadrivial arts.1 Some 150
years later, the interest in Boethius’s Arithmetic and Music and the use of the ‘Gerbert
abacus’ (all well established by then) prepared the reception of Euclid and a bit of Archi-
medean mathematics from 1120 onward, as well as the teaching of some Euclid and Eucli-
dean geometry at universities together with astronomical compendia.

Back to the mathematics of those who counted and measured. If we look at the
pseudo-Heronian late ancient or early Byzantine collections Geometrica and Stereome-
trica, traces of Euclidean influence are beyond doubt (mediated by Heron but certainly
not only); but there is also much beyond that, and generally the traces of Euclid are
surface. Most of the substance is likely to have been shared with Near Eastern practical
geometers.

This – but mostly without any Euclidean surface – is also what we find in the geome-
tries of the Italian abbacus books. A modest part of it can be seen to have been borrowed
from the post-agrimensor geometry of first-millennium Latin Europe, but the bulk
appears to be derived from Near Eastern practical geometry mediated by medieval
Arabic culture. However that may be, this is what we find in a typical fourteenth-
century abbacus geometry (not necessarily in this order):

1Whether more than an excuse can be debated: there must have been reasons beyond a venerated book to do so – other
even more venerated books condemned astrology, but that had no effect.
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– Areas for squares and rectangles;
– determination of circular parameters (diameter, circumference, area) from one of them
– the Archimedean approximation to π being accepted as gospel, at times stated in the
way of an axiom;

– determination of the area and the hypotenuse of a right-angled triangle, the other sides
being given, or of the third side from the hypotenuse and another side;

– similarly for a square;
– approximate determination of square roots corresponding to the formula

��������
n2 + a

√
≈ n+ a

2n
;

– sometimes volumes of parallelepipedal walls;
– and sometimes some other spatial problem like the surface of a conical tent, often badly

understood and solved.

All magnitudes have numerical measures – some given, others to be found.
Fibonacci’s Practica geometrie is evidently of a different mould, comparable in aim to

Heron’s Metrica though of greater size. A fair number of reduced vernacular versions
survive. However, these were not part of the abbacus treatises; they may have been pro-
duced for and kept by the kind of wealthy citizens that also possessed a copy of Fibonac-
ci’s Liber abbaci as a prestige object. This genre culminated in the geometric second part
of Luca Pacioli’s Summa.

Neither type inspired anything that with good will could be characterized as a research
programme; Pacioli’s geometry, though less amputated than vernacular predecessors,
still does not go beyond Fibonacci. An even more striking illustration is the geometry
contained in Giovanni Sfortunati’s Nuovo lume: Libro de arithmetica from (1534). The
author presents himself as a ‘most perspicacious scrutinizer of the Archimedean and
Euclidean doctrines’,2 but the only Euclidean or Archimedean aspects of the book are
that the problems are no longer ragioni but propositioni, and that the geometry part
begins with some explanations serving as definitions – some contaminated, some
inspired by the Campanus Elements. The substance goes somewhat beyond what was
habitual in earlier abbacus treatises (never beyond ps.-Heron, to be sure), but arguments
for the correctness of procedures are wholly absent.

Another high-level fellow-traveller of the abbacus tradition is Elements X. Chapter 14
of the Liber abbaci, dealing with ‘roots’, draws heavily on the Euclidean theory of
irrational magnitudes but so disorderly than one might suspect Fibonacci of borrowing
from somewhere without understanding; his Flos, however, leaves no doubt that he
understood well (as he mostly did when copying); in all probability the lack of order is
a consequence of the mere addition of extra material in the 1228 version without rewrit-
ing of what was already there. The three Florentine ‘abbacus encyclopediae’3 from
around 1460 borrow much of the material, adding some questions not found in the

2My translation, as all translation into English below.
3All three carry the title Trattato di Praticha d’arismetrica, and all three are known from autographs:

– Vatican, Ottobon. lat. 3307 (speaking of 1445 as ‘twelve years ago’);
– Florence, Biblioteca Nazionale Centrale, Palatino 573 (an owner, probably the dedicatee, taking possession in 1460);
– Siena, Biblioteca Comunale L.IV.21 (dated 1463, written by Benedetto da Firenze).
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Liber abbaci; two of them also offer a paraphrase of the Campanus version of Elements X
(statements with added explanatory numerical examples, no proofs). Pacioli also borrows
from Fibonacci, whereas Michael Stifel, when taking up the classes of irrationals in the
Arithmetica integra, makes something more systematic – even, under the conditions of
the new arithmetization, more systematic than Euclid, whose ‘order now nobody can
present in a satisfactory manner’ (thus the beginning of book II chapter 13, [Stifel
1544, 143v]).

Stevin, in the Arithmetique, reformulates the theory of irrationals more radically
(1585, 43–54). However, in Descartes’ Géométrie it plays no role.4 The closest we
come seems to be this passage about equations (ed. Adam and Tannery 1902, 454):

If the known quantities that are there contain some broken numbers, they have to be
reduced to other integers by multiplication, as was just explained. And if they contain
surds, they also have to be reduced to other rationals, inasfar as possible, either by the
same multiplication or by various other means, which are also easily found.

When we come to the physical sciences and technologies that drew on the new algebra,
for long they couldn’t care less about rationality and irrationality – and when (at the
arrival of ergodic theory, if this is considered physical science), the set consisting of
Euclid’s restricted class of what (expressed in numbers) can be produced by additive
and multiplicative operations and the taking of square roots had measure zero.

Two other pieces of advanced mathematical theory were also studied or at least copied
by a small handful of abbacus teachers: congruous-congruent numbers5 and an investi-
gation of the ancient ten means.6 The former topic is still alive today in number theory as
a minor concern, and still in part experimental; the latter, as far as I know, was totally
forgotten after 1500 (probably the reason that no historian of mathematics has noticed
what goes on before I stumbled on what Fibonacci does in 2008). None of them had
the least impact in the new algebra of the seventeenth century.

So, the few segments of high-level Greek mathematics that had been dealt with by
Fibonacci and transmitted along with the abbacus tradition had no influence on the
transformation of algebra in the seventeenth century. As we shall see, abbacus algebra
had. But first another branch of the labyrinth.

In 2012, Christian van Randenborgh discovered that Frans van Schooten had had
access to the manuscript of Descartes’ Géométrie in late 1632, and that its pagination
shows that the Dioptrique and the Météores had been written first. That is, these three
essays were not added to the Discours de la méthode as illustrations: they precede it.
The Discours is, so to speak, a summary preface – written when Descartes had come
under the influence of Mersenne’s Neoplatonism. Descartes did not glue an Archi-
medes-inspired geometry to a Neoplatonically tainted method, thereby sparking the cre-
ation of the mathematics of the Newtonian revolution and the technological world.

The former two have so much material (as well as structure) in common that they must be free elaborations (with
different additions) based on a shared model. Benedetto also knows this model, but uses it much less.

4Similarly already Cardano’s Ars magna. A few stray references (Cardano 1545, 9r, 15r, 49r, 61r) confirm that Cardano knew
the topic, but discarded it as of no relevance for his project. In De regula aliza (Cardano 1570, 8–15) he does deal with it.

5Number pairs (a,q2), for which both q2+a and q2–a are squares. On Fibonacci’s work on the topic, see (Sigler 1987), on
their appearance in the Florentine encyclopediae (Franci 1984).

6Namely, for each mean b (geometric, harmonic, … , the trivial arithmetical mean being excluded) between numbers a
and c to find any of the numbers from the other two – see (Høyrup 2021).
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Nonetheless, I agree that Archimedes played an essential role in what happened. But
we have to look at what happened to algebra between al-Khwārizmī and Descartes – dis-
regarding al-Khayyāmī and al-Samaw’al, since their work seems not to have been known
to Descartes or any predecessor of his).

We can even disregard Fibonacci. Two of the Florentine encyclopediae, after copying
the introduction to algebra from Guglielmo de Lunis’s translation of al-Khwārizmī, also
copy from Fibonacci; but their own algebra is different, and descends from the abbacus
algebra of the fourteenth century.

More on that in a moment. First, however: what was Descartes’ immediate source for
algebra? In the Discours (ed. Adam and Tannery 1902, 17) we find that he had read a bit,
when being younger,

logic and, among the mathematics, the analysis of the geometers and algebra, three arts or
sciences which seemed to promise something for my purpose.

The combination leaves no doubt that these topics he had studied at the Jesuit college.
There, as we shall see, his algebra was that of Clavius (1608), in debt to the cossic tra-
dition, not least to Stifel – that is, to the German descendants from abbacus algebra.7

Abbacus algebra goes back to the early fourteenth century, and behind that to a kind of
Arabic algebra that seems to have learned something (but nothing advanced) from al-
Karajī8 – probably practised in the Maghreb and/or al-Andalus, and then seemingly bor-
rowed via Romance-speaking Spain and/or Provence. Exactly where is unimportant,
decisive is that it was a new start.9 Already from the beginning there was interest in
solving reducible higher-degree problems, and some writers also offered (wrong) rules
for non-reducible equation types of the third and fourth degree (surviving here and
there until the 1550s, see imminently).

Algebra was a topic serving for challenges, not least in the competition for positions –
the Cardano-Tartaglia controversy exemplifies that.10 It was of no use in the abbacus
school (whose students were mostly 11–12 years of age or less) or in any real-work prac-
tice of those who had attended it (excepting those who were themselves to become
abbacus masters). Since solutions were never tested (those involving roots were not
approximated), false solutions – useful in competitions against incompetent adversaries
with equally incompetent lay judges – could survive for long, being still repeated by Piero
della Francesca and even by Bento Fernandes in Portugal in 1555. But algebra was a pres-
tige topic, for which reason mathematically more competent abbacus teachers invested
much effort in developing the field, not just repeating what was inherited in the way a
few of them would repeat and slightly reformulate Elements X in Fibonacci or Campanus
version. They became familiar with the character of the sequence of powers as a geo-
metric progression, extending it upwards as well as downwards to negative powers;

7In the early mathematical writings contained in (Adam and Tannery 1908), Cardano only appears in the editors’ notes,
not in Descartes’ texts. In the Géométrie, Descartes knows Cardano’s solution to the third-degree equations. Viète he
also seems to have learned about at a late moment, without being much impressed by him. Indeed, if we try to look at
Viète’s Zeteticorum libri quinque (Viète 1591b) with Descartes’ eyes, the symbolism with its insistence on explicit hom-
ogeneity is too heavy to facilitate calculations, and a large part of the problems that are solved had been dealt with in
abbacus and cossic algebra.

8See (Høyrup 2011).
9Documentation in (Høyrup 2007) and in various articles in (Høyrup 2019).
10Cardano did not compete for a position; Tartaglia’s misfortune was that he did.
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they explored how complicated distortions of commercial problems could lead to redu-
cible higher-degree equations, and also examined the arithmetic of polynomials system-
atically; they introduced abbreviation systems for powers and arithmetical operations
(often at odds with each other – ‘as many territories, so many usages’, and ‘as many
heads, so many opinions’, in Pacioli’s words [1494: I, 67v]); they gradually got habituated
to see subtractive numbers as negative numbers, without having a clearly defined
concept; and more.

When abbacus mathematics spread from northern Italy to Germanic and French
areas,11 this transformed algebra travelled together with the humbler levels of merchant
mathematics as cossic algebra (reflecting the Lombardic orthography cossa for Tuscan
cosa). Authors like Michael Stifel and Johann Scheubel brought more order to the
field, and provided the basis for Clavius’s Algebra (1608). This was what was used by Des-
cartes’ Jesuit teachers (Descartes graduated from La Flèche in 1614). In a letter to Beeck-
man from 1619 (ed. Adam and Tannery 1908, 154–160), Descartes indeed uses Clavius’s
notation, not that of Viète; the same letter expresses the ambition to solve all problems
‘dealing with any kind of quantities, discrete as well as continuous’, by means of curves
corresponding to higher-degree equations.12

The problem Descartes discussed in 1619 concerned the use of a mesolabe, a particular
geometrical compass, to solve cubic problems, including the division of an angle into
three or any other number of parts.13 It was thus located at the intersection of advanced
cossic algebra, pre-Euclidean Greek geometry, and mechanics.

Descartes was not alone, however. His ambition to solve all problems is hardly an echo
of Viète’s famous nullum non problema solvere, ‘to leave no problem unsolved’ (1591a,
9r), which Descartes probably did not know. All the more, it is evidence of appurtenance
to a shared mathematical culture: a culture of problem solving, not of proving theorems
or developing theory; moreover, of agonistic problem-solving.

As we have touched upon, even the abbacus culture was agonistic – teachers competed
for positions, but also as a matter of professional prestige. We may look at two examples
of the problems used by abbacus teachers to challenge the ability of colleagues.

First one from the Ottoboniano Praticha (fol. 132r):

5 eggs and 4 oranges and 10 denari are worth 8 eggs and 2 oranges and 6 denari. And 7 eggs
and 6 oranges less 3 denari are worth 5 eggs, 4 oranges and 7 denari. It is asked, what is an egg
worth, and what is an orange worth? This case has been given to me a few days ago to solve.

Another one is reported in Benedetto’s Praticha (fol. 292r):

Find me a number which, when divided by 64 leaves 18, and when divided by 82 leaves 13.

This question had probably been meant as a trap for the young Giovanni di Bartolo (the
number has to be even as well as odd), contrived by one of the older competitors who
tried to make a fool of him (readers may be consoled that those who in the end stood
as fools were the jealous competitors).

11To other areas too, but they do not concern the present discussion.
12In 1628, when Descartes met Beeckman again, the project had grown to encompass something like the future Discours.
That is, as we see again, algebraicized geometry was not created as an illustration and application of the Discours, it
came first.

13Cf. the explanation in (Sasaki 2003, 113–121).
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Most of the abbacus challenges were, like the first example, complicated variants of
traditional recreational problems; as a rule they did not invite a simple algebraic pro-
cedure as glaringly as here. The second example shows, however, that problems we
would classify as simple number theory were not absent. This corresponds to the chal-
lenges which Fibonacci says to have been confronted with. One, as told in the Liber
abbaci (ed. Giusti 2020, 324) was proposed to him by a Constantinopolitan master:

One [man] asks 7 denarii from another one, saying that he shall then have 5 times as much
as him; the second asks the first for 5 denarii, and he shall have seven times as much.

More complex is the following, asked by the court philosophers of Emperor Frederick II
and reported in the Flos (ed. Boncompagni 1862, 236) (emphasis added to ease under-
standing of the structure): to find

five numbers, of which the first with the half of the second and third and fourth makes as
much as the second with the third part of the third and fourth and fifth numbers, and as
much as the third with the fourth part of the fourth and the fifth and the first numbers,
and also as much as the fourth with the fifth part of the fifth and the first and the second
numbers, and besides as much as the fifth number with the sixth part of the first and the
second and the third numbers.

This is nothing but a pure-number version of a complicated variant of the traditional
riddle about the ‘purchase of a horse’ – ‘five men want to buy a horse; the first says to
the second and third and fourth, if I can have half your denarii, I shall be able to buy
the horse … ’.

Then, of course, there is the properly number-theoretical question asked by master
Theodoros from the same courtly circle, the starting point for Fibonacci’s Liber quadra-
torum (reported last in this same ‘book about squares’, [ed. Boncompagni 1862, 279]).
Similarly difficult questions, we should be aware, were apparently not exchanged as chal-
lenges between the abbacus masters.

Number theory was certainly not forgotten by all mathematicians after 1600 – vide
Fermat. But it did not contribute to the reshaping of mathematics, and on its part, it
did not benefit from the new analysis before Euler. The decisively productive problems
taken up by the seventeenth-century mathematicians came, as Reviel rightly points
out, from Archimedes, Apollonios, and Pappos; they were wholly different from anything
circulating in or in the vicinity of the abbacus environment.

We may take the famous Viète – van Roomen exchanges as the starting point (Busard
1975, 533). First, van Roomen proposed an algebraic equation of degree 45, which Viète
recognized as the one corresponding to a division of the angle 45° into 45 equal parts; as
counter-challenge Viète asked for the drawing of a circle touching three given circles,
presenting himself a better solution in Apollonius gallus than the rather trivial answer
proposed by van Roomen (obtained by means of the intersection of two hyperbolas,
and thus non-constructible). The hint of arrogance with which Viète addresses his inter-
locutor in the end (ed. van Schooten 1646, 338) shows that no research in common but a
game of prestige was meant: van Roomen is spoken to as candide belga.

Viète’s Variorum de rebus mathematicis responsorum liber VIII (1593) gives a broader
view of the kind of problems and techniques occupying the minds of the competing
mathematicians of the outgoing sixteenth and the first half of the seventeenth century:
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two intermediate proportionals (with abundant extensive Greek quotations); squaring
and rectification of the circle and of circular segments, using Archimedean spirals and
the quadratrix; construction of a regular heptagon; lunules; etc. In the end comes
much spherical trigonometry, the only topic pointing to broader practices (astronomy
and navigation).

Fermat, Roberval – and of course Descartes – extended the field of interest, within as
well as beyond the Greek horizon. Far from everything they did integrated algebra and
geometry or kinematics, but much of it did; this new range of problems was thus what
led to the creation of the new algebra, soon to engender also infinitesimal analysis.

This had little to do with Neoplatonism – probably nothing. Even in Descartes’ case,
his plan if not its completion preceded his encounter with that doctrine. Instead, we
should look at Humanism.

Original Humanism had not been interested in mathematics. Symptomatically, four-
teenth-century Humanists knew nomore than classical Latin writers about Archimedes –
that is, little in total, and nothing at all about Archimedes the mathematician (Høyrup
2017, 6–12). Fifteenth-century Humanism, though mostly similar, was not quite a mono-
lith in this respect. A few of its representatives were linked to the higher artisans of the
epoch – best known is the case of Leon Battista Alberti and his collaboration with Filippo
Brunelleschi, but military engineers and architects in general should be not be forgotten.
We might be tempted to mention also Cusanus, who was a kind of Neoplatonist and used
surveying mathematics to prove that God has to be ternary,14 but whose contribution to
mathematics (fallacious squarings of the circle, all in [Hofmann 1952]) hardly invited
emulation. Sixteenth-century Humanism was forced by a changing world to go
further. As pointed out by Mario Biagioli (1989), the efficiency of the French artillery
in its grands tours d’Italie in the 1490s showed that Coluccio Salutati, chancellor of Flor-
ence until 1406, was no longer right that Latin letters were ‘a weapon more to be feared
than a troop of horses’ (Gragg 1927, x); or at least that Latin letters were no match for
modern gunnery. The discovery of ‘new’ worlds beyond the oceans had similar impli-
cations, and so had the great hydraulic projects. The many mathematical instruments
depicted in Hans Holbein’s ‘Ambassadors’ demonstrate that Northern Humanism was
aware of the new conditions from its very beginning. These civically useful mathematical
practices, however, had no need for Archimedes. Even Tartaglia saw no use for him when
he tried to transform ballistics into a scientia.15

In agreement with the discovery of the civic necessity of the mathematical arts,
however, printed Humanist editions of the Greek classics (in Greek and/or Latin) took
off after 1500, making Archimedes, Apollonius, Diophantos and Pappos accessible.
Whereas the higher artisans of the fifteenth century (including a towering figure like
Alberti) had understood Archimedes in their own image, as a higher artisan, the court
mathematicians (better, some of them, those few who are remembered in the history
of mathematics) were now able to see him as a mathematician (still in their own
image, but they themselves were different).

14De docta ignorantia X. ed. (Wilpert 1967, 11–13).
15Apart, that is, from an unspecific appeal in the dedicatory letter (Tartaglia 1537, A iv) to ragion Archimedane – changed
in (Tartaglia 1550) into ragion naturale, after the author had become familiar with the genuine Archimedes and brought
part of the Moerbeke translations into print.
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Famously, in 1547 Alessandro Piccolomini was to base the certainty of mathematics
on Proclos’s newly accessible commentary to Elements I, and thus on Neoplatonic epis-
temology (Jardine 1988, 693f ). But the conviction that mathematics is not only the most
certain of the sciences (that had also been Aristotle’s view in the Posterior Analytic) but
also the basis on which everything else has to be built had profounder implications, and it
is older; if anything, this conviction was what came to the fore when the new mathematics
became part of new science in the seventeenth century. It had arisen among those
fifteenth-century surveyors and architects to whose experience it corresponded. It was
given voice by Pacioli in the dedicatory letter to the De divina proportione from 149816

(ed. Winterberg 1889, 36) (the italicized passage is in Latin and a quotation from
Aristotle):

the said mathematical sciences are the fundament and the stairway by which we arrive at
knowing every other science, because they possess the first degree of certitude, the Philoso-
pher declares so, saying that The mathematical sciences are indeed in the first degree of cer-
titude, and the natural sciences are next to them. And without knowing them it is impossible
to understand any other well.

So, at the root of the emergence of the new mathematics we still find Archimedes and the
pre- and post-Archimedean Greek mathematicians. But not as the root: what was taken
from them was not as much tools as challenges, problems which it would be prestigious
to confront in new and better ways.

Galileo, in Intorno alle cose che stanno in su l’acqua and elsewhere, is certainly in dia-
logue with Archimedes, but mostly critically in spite of his general veneration of the
figure, trying to do or explain better; little if anything of this probably contributed to
Galileo’s indubitable impact on the upcoming Scientific Revolution. Kepler used the
ellipse in his Astronomia nova from (1609, 221) – but as an approximation to the suppo-
sedly true egg-shaped orbit (vere esse ovalem, non ellipticam). Archimedes is also
appealed to a few times afterwards (Kepler 1609, 223, 232 and 226), but only under
the condition si figura nostra esset perfecta ellipsis.

If we make the jump from Kepler to Newton’s Principia from 1687, the ellipse is no
longer a computable and thus convenient approximation but truth. However (I omit
details and references), a closer analysis of the several decisive points where Hooke
had the fundamental insights (universal gravitation, inverse square law for gravita-
tion) before Newton raises the question whether the results justly known under
Newton’s name would have been reached within the next few decades, perhaps by
means of Cartesian algebra and Leibnizian or some other calculus – as soon to be
done anyhow, cf. (Nauenberg 2010); this was the technique that came to serve in
the second industrial revolution, when even the British had replaced Newtonian by
Lagrangian analysis since long). That would certainly have been without the propa-
gandistic effect of the Principia, which even Newton (1687, 401) knew was propagan-
distic, not expecting his readers to study in depth the mathematical foundations
provided in Book I.17

16Published in print in 1509, 10 years after the dedicatee Ludovico Sforza had lost power.
17Voltaire’s example illustrates this propagandistic efficiency. As well known, Voltaire was the prophet of Newtonianism in
France. However, the article “Atheism” in his Dictionnaire philosophique (ed. Moland 1878, 465f ) contains this:

Do you understand the extreme folly in pretending that it is due to a blind cause that the square of the revolu-
tion of one planet is always to the squares of the revolutions of the other planets as the cube of its distance to
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Moreover, the impact of the great Greek geometers was mediated through two deci-
sive encounters: the encounter of Humanism with the material world and with the world
of mathematical practitioners around 1500; and the encounter of Humanist and post-
Humanist mathematicians with the algebra ultimately coming from the abbacus
school but transformed by the German cossists (to some extent as further transmitted
by Jacques Peletier in original or as plagiarized by Ramus). All of it was conditioned
by a culture of agonistic problem-solving – similar to that of the abbacus masters, we
might claim, yet no descendant but a product of the socio-cultural circumstances of its
own epoch which I shall not discuss (there is no end to context but there has to be
one to discussions).

There are at least two reasons that the new problem culture became productive in a
way abbacus culture had not been. I have mentioned the introduction of abbreviations
for powers and operations in abbacus algebra. Occasionally these were used in
genuine though rudimentary symbolic calculations. However, as I have formulated it
on earlier occasions, the development was hesitating, when not directly stumbling
(Høyrup 2019, chapters 30 and 31). Quite striking is that Benedetto da Firenze created
a symbolism for symbolic first-degree algebra with four to five unknowns (nothing pre-
venting him to go to six or more) in his Praticha from 1463, fully equivalent and very
similar to what Johannes Buteo was to do in 1559 – see (Høyrup 2020) – but even
more striking that nobody appears to have adopted the innovation, even though Bene-
detto’s treatise still survives in three copies and will have been copied more often;
Viète, furthermore, took over from Buteo (if not from Stifel) at most the idea of using
letters for several unknowns.

There is a good reason that Benedetto’s technique was not adopted by others: in the
contemporary perspective it was superfluous (Benedetto himself appears to have
regarded his innovation as a marginal improvement only). Since Fibonacci, two algebraic
unknowns had been used regularly though sparsely, sometimes in rhetorical and some-
times when we reach the fifteenth century in symbolic calculations. But they served in
recreational problems of types like the ‘purchase of a horse’ or ‘men finding a purse’,18

and these could be solved without any use of algebra (and had been solved without
algebra since Antiquity – Thymarides’ bloom is our first certain evidence); the gain by
using a new technique did not outweigh the trouble to learn it and make your audience
(readers or competitors) understand it.

But there is a further reason, equally forceful. Benedetto’s treatise was copied, but
chances are fair that it never reached readers who were competent enough to adopt
his new technique and use it for their own purposes. Abbacus culture was a manuscript
culture, and results present in a few manuscripts could still safely be presumed to be

the cubes of the distances of the others to the common centre? Either the stars are great geometers, or the
eternal geometer has put the stars into order.

If Voltaire had understood the mathematics of Principia I (the only aspect of the work that can be connected to Archi-
medes and his companions) he would have known that a ‘blind cause’ suffices for establishing Kepler’s laws, and that
the stars are in no need to be great geometers.

18“Three men walk on a road and find a purse, The first says to the second, if I get the money in the purse I shall have
twice as much as you …”, and similarly.

Strikingly, the fangcheng technique for solving multiple linear equations which is the topic of chapter VIII of the
Chinese Nine Chapters is developed around problems belonging to the same family. Even in China, it led to
nowhere, being mathematically elegant but useless – cf. (Martzloff 2006, 258).
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unknown to whatever audience one had. A challenge sent by an abbacus master from
L’Aquila to the Florentine colleagues in 1445 had indeed been solved in a rather presti-
gious abbacus Praticha written before 1340, as Benedetto tells on fol. 315r.

Stifel and other German cossists systematized the abbreviations and the use of
schemes for polynomial algebra; but the cossists were not much engaged in a culture
of controversy (they were writing books to be printed, whose title pages as a rule
claim the book as a whole to be new).19 Nothing pushed them to explore the possibilities
inherent in these techniques; even Stevin did not go far in this direction.

The controversies and the communication systems of the seventeenth century
changed both aspects of the situation. Firstly, the problems that were now explored
were of a kind that was often not accessible to traditional methods – not even to those
of the ancient Greek geometers. Secondly, the audience of Viète encompassed van
Roomen, and that of van Roomen encompassed Viète; that of a Fermat, a Descartes or
a Roberval encompassed Fermat, Descartes and Roberval (together with Cavalieri and
others). Seventeenth-century competition was a competition between mutually con-
nected intellectual peers, and any advance made by one of the participants would be
known to the others, criticized and (if it was found worth it) emulated. Certainly,
much of the communication was semi-private, occurring through the widely diffused
letters to Mersenne; but correspondents knew the same books and thereby had a
shared basis. The closest we come to this in the previous century is probably Bombelli’s
criticism of and advancement over Cardano – at a distance of 27 years. Density counts.

This analysis, admittedly, is labyrinthine. What actually happened was probably much
more of a labyrinth – dialectic (even when pluridimensional) remains an approximation.
Archimedes and Apollonios stay as parts of the process, though as providers of problems
and challenges to be reshaped rather than as those who had delivered the tools.

Disclosure statement

If there is any direct application of my research, it will be for mining plutonium on the moon, in
which I have no personal interest.

(to quote Tom Lehrer, “If you ask a silly question you get a silly answer”.)
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